Prior colonisation with Candida species fails to guide empirical therapy for candidaemia in critically ill adults


Published in:
Journal of infection

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Prior colonisation with *Candida* species fails to guide empirical therapy for candidaemia in critically ill adults

Judith A. Troughton a,* , Gail Browne b, Danny F. McAuley b,c, M. James Walker a, Christopher C. Patterson d, Ronan McMullan a

a Department of Microbiology, Kelvin Laboratories, Royal Group Hospital Trust, Grosvenor Road, BT12 6BA, Belfast, UK
b Regional Intensive Care Unit, Royal Group Hospital Trust, Grosvenor Road, BT12 6BA, Belfast, UK
c Respiratory Medicine Research Group, Centre for Infection and Immunity, Queens University Belfast, Grosvenor Road, Belfast, BT12 6BN, UK
d Epidemiology Research Group, Mulhouse, Queens University Belfast, Grosvenor Road, Belfast, BT12 6B, UK

Accepted 16 August 2010
Available online 16 September 2010

**KEYWORDS**

Pre-emptive therapy; Candidaemia; ICU; Colonisation; Anti-fungal

**Summary**

Objectives: Pre-emptive fluconazole (fcz) anti-fungal therapy is often based upon *Candida* colonisation of at least 2 non-contiguous non-sterile sites. The aim of this study was to evaluate the relationship between candidaemia and prior colonisation of non-sterile sites.

Methods: A retrospective observational study was performed in the intensive care unit/high dependency unit (ICU/HDU) of a University hospital on alternate years from 1999–2007, where a pre-emptive anti-fungal therapy policy was introduced in 2005.

Results: A higher proportion of blood isolates were *Candida glabrata* compared with non-sterile isolates (16/46 vs 106/1062; \( p < 0.001 \)), similarly a greater proportion of blood isolates were fcz-resistant compared with non-sterile isolates (15/46 vs 101/1062; \( p < 0.001 \)). No trend over time was detected in the proportion of *C. glabrata* and *Candida albicans* isolates from blood and non-sterile sites, or in the fcz-sensitivity of isolates from these sites. *C. glabrata* candidaemia was more likely to occur in the absence of non-sterile site colonisation compared with non-glabrata candidaemia (12/16 vs 8/30; \( p = 0.005 \)). Of candidaemic patients, 43% had no preceding colonisation by any *Candida* spp.; in 67% of these patients, candidaemia was due to *C. glabrata*.

Conclusions: Pre-emptive therapy based upon colonisation of at least two sites may be inadequate as 43% of candidaemic patients had no evidence of prior colonisation, 67% of whom had...
Introduction

Candida spp. causes around 9% of health-care associated bloodstream infections in ICU patients\(^1\) and have an attributable mortality of approximately 30%\(^2\) with delayed anti-fungal therapy an independent predictor of mortality.\(^3\) Preceding Candida colonisation has been reported to be the strongest predictor of subsequent invasive disease,\(^4\) and is therefore accepted as an indication for early anti-fungal treatment in at-risk patients.\(^4-8\)

Pre-emptive prescribing of anti-fungal drugs is based upon the species and drug susceptibilities of Candida spp. isolated from at least 2 non-contiguous skin and mucosal sites of high risk patients; fcz is typically the drug of choice.\(^9\) However the relationship between colonising Candida spp. and those causing invasive disease has not been definitively established.

The aim of this study was to evaluate the relationship between candidaemia and prior colonisation of non-sterile sites in a mixed adult ICU/HDU, where a pre-emptive anti-fungal therapy policy was introduced in 2005. Accordingly, the following measures were examined: firstly whether the distribution of Candida spp. is similar between blood and non-sterile isolates; secondly, whether the proportion of fcz-sensitive Candida isolates is similar between blood and non-sterile sites; and finally to establish the proportion of patients with candidaemia who had prior Candida colonisation of at least 2 non-contiguous anatomic sites and to describe the species involved.

Methods

Study design, setting and definitions

The Royal Victoria Hospital is a 1000-bed University hospital with a 28-bed ICU/HDU. A retrospective observational study of patients in ICU/HDU with Candida spp. colonisation or candidaemia, as identified from screening swabs or blood culture, was carried out using the prospectively collected laboratory records. The difference in Candida spp. distribution and fcz-sensitivity of isolates from blood and non-sterile sites were compared per isolate, using data from the selected cohort. Colonisation of non-sterile sites preceding candidaemia was investigated in the subgroup of patients with confirmed candidaemia.

Screening swabs were sent from each patient on admission to the unit and then weekly thereafter until discharge from ICU/HDU as part of standard patient care. They were typically sampled from the following: nose, groin, axilla, perineum, sputum and urine, with the aim to detect MRSA colonisation; however if Candida spp. were identified these were routinely reported. Additional superficial swabs and blood cultures were sent at the clinicians’ discretion.

Candida colonisation was defined as the growth of at least 5 cfu Candida spp. from a non-sterile site, that is, any sample type other than blood. Central line tips were excluded from the analysis as these could not consistently be categorised as either sterile or non-sterile specimens. Candidaemia was defined as at least one blood culture taken during ICU/HDU admission, either peripherally or from a central line, positive for Candida spp.

Participant selection and exclusion criteria

Patients admitted to ICU/HDU had undergone severe trauma, neurosurgery or vascular or abdominal surgery, although demographic data or antimicrobial therapy received during ICU/HDU admission was not available. All patients admitted to ICU/HDU on alternate years from 1999—2007 who isolated Candida spp. from either a non-sterile site or from blood, were eligible for inclusion in the analysis. Patients with candidaemia for whom data on surface colonisation was unavailable were excluded from the analysis. Pre-emptive anti-fungal therapy was introduced in 2005 for patients with colonisation at 2 or more non-sterile sites and signs of unexplained sepsis. Additionally, patients with perforation of the oesophagus, small intestine or large bowel following either (i) a course of broad-spectrum antibiotics, or (ii) recent bowel surgery, received pre-emptive therapy. In this category of patient the addition of an anti-fungal was not dependent upon colonisation or clinical status.

Data was not available for which patients received pre-emptive anti-fungal therapy.

Isolate identification

The blood culture detection method used was the BacT/Alert automated system (BioMerieux, Basingstoke, UK).

Non-sterile specimens were cultured on blood agar; a positive culture was defined as the detection of at least 5-cfu of any Candida spp. within 48 h incubation at 37 °C. Candida colonies from blood or non-sterile specimens were subcultured onto CAN2 chromogenic agar (BioMerieux, Basingstoke, UK) for purity. Candida albicans was identified by germ-tube formation in horse serum and confirmed using CANDIDAST ES Twin (ELITECH, France); the identity of non-albicans species was confirmed using the API 32C (BioMerieux, Basingstoke, UK) identification system. Fcz-sensitivity was determined using SENSITITRE YeastOne Y08 (Trek Diagnostics Systems Ltd, East Grinstead, UK).

Only the first isolate of each species from each non-sterile site tested and from blood, for each patient, was included in this study; isolates were categorised as “albicans”, “glabrata” and “non-albicans/non-glabrata”. 

© 2010 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Statistics

Comparisons of proportions of categorical variables were investigated using Pearson chi-square and Yates’ corrected test. Age, APACHEII score and length of stay were compared between the candidaemia group and total cohort using the independent samples t-test. Trends in fcz-sensitivity and the number of isolates of albicans, glabrata and non-albicans/non-glabrata over time were calculated using the chi-square test for trend. The number of samples sent from candidaemic patients, and length of ICU stay, was compared using the Mann–Whitney U test. The 5% significance level was used for all tests. Analyses were performed using SPSS 15.0 for Windows software (SPSS inc., Chicago, Illinois, U.S.A.).

Results

A total of 3500 patients were admitted to ICU/HDU during the study. The study cohort comprised 974 patients; 46 patients with candidaemia and 928 with colonisation. From these 974 patients there were 46 positive blood cultures and 1062 positive non-sterile specimens. Table 1 shows the source of non-sterile isolates. Complete records of non-sterile site samples were not available for 4 of the 46 patients with confirmed candidaemia and these were excluded from this analysis. As 4 patients had mixed candidaemias, 46 blood isolates from 42 patients comprised the candidaemia subgroup. Therefore the final cohort comprised 970 patients; 42 with candidaemia and 928 with colonisation. Table 2 shows the demographic data for the total ICU/HDU cohort and the candidaemic group. There was no significant difference in either age or APACHEII score between blood and non-sterile sites, in the proportion of non-sterile isolates of different species isolated (\( \chi^2 = 0.87 \), df = 1, \( p < 0.14 \)). Likewise, there was no significant difference between blood and non-sterile sites in the proportion of non-albicans/non-glabrata species isolated (\( p = 0.88 \)).

Distribution of Candida spp. from blood and non-sterile isolates

The distribution of species from blood and non-sterile sites are shown in Table 3. A significantly higher proportion of Candida spp. from non-sterile sites were C. albicans compared with blood (\( \chi^2 = 15.67 \), df = 1, \( p < 0.001 \)); however a significantly higher proportion of Candida spp. from blood were Candida glabrata compared with non-sterile sites (\( \chi^2 = 25.21 \), df = 1, \( p < 0.001 \)). There was no significant difference, between blood and non-sterile sites, in the proportion of non-albicans/non-glabrata species isolated (\( p = 0.88 \)).

Trends over time in species distribution

Although there was a significant difference in the proportion of glabrata isolates detected from non-sterile sites between the years investigated (\( \chi^2 = 12.10 \), df = 4, \( p = 0.017 \)), there was no linear trend to the difference (\( \chi^2 = 0.53 \), df = 1, \( p = 0.47 \)) indicating overall no progressive change in the proportion of isolates with time.

No difference was found in the proportion of C. glabrata isolates detected from blood over time (\( \chi^2 = 1.28 \), df = 4, \( p = 0.87 \)). Likewise, there was no significant difference over time in the proportion of either C. albicans or non-albicans/non-glabrata isolates from blood or non-sterile sites.

Flucnazole sensitivity

Of the 46 blood isolates, 15 were resistant or susceptible dose-dependent (SDD) to fcz. All but one of these was C. glabrata.

A significantly greater proportion of Candida isolates from non-sterile sites were fcz-sensitive compared with blood (\( \chi^2 = 25.10 \), df = 1, \( p < 0.001 \)) (Table 3). There was no significant difference between blood and non-sterile sites in the proportion of fcz-sensitive isolates for each Candida spp. (albicans, glabrata and non-albicans/non-glabrata). There was no trend in fcz-sensitivity over time in either blood (\( \chi^2 = 0.14 \), df = 1, \( p = 0.71 \)) or non-sterile (\( \chi^2 = 2.12 \), df = 1, \( p = 0.15 \)) isolates.

Candida colonisation preceding candidaemia

In only 13 (31%) patients with candidaemia, was there prior isolation by the same Candida spp. of 2 or more non-sterile

Table 1: Source of non-sterile isolates of Candida spp.

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>No of samples</th>
<th>% of 1062 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum/tracheal secretions</td>
<td>359</td>
<td>33.8</td>
</tr>
<tr>
<td>Throat/oral swab</td>
<td>290</td>
<td>27.3</td>
</tr>
<tr>
<td>Urine</td>
<td>158</td>
<td>14.9</td>
</tr>
<tr>
<td>Nasal swab</td>
<td>69</td>
<td>6.5</td>
</tr>
<tr>
<td>Rectal swab</td>
<td>53</td>
<td>5.0</td>
</tr>
<tr>
<td>Skin swab</td>
<td>51</td>
<td>4.8</td>
</tr>
<tr>
<td>Penile/Vaginal/perineal swab</td>
<td>24</td>
<td>2.3</td>
</tr>
<tr>
<td>Pleural or abdominal drain fluid</td>
<td>20</td>
<td>1.9</td>
</tr>
<tr>
<td>Wound swab</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>Bronchoalveolar lavage fluid</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>Tracheostomy-site swab</td>
<td>7</td>
<td>0.7</td>
</tr>
<tr>
<td>Line swab</td>
<td>4</td>
<td>0.4</td>
</tr>
</tbody>
</table>
non-contiguous sites; a further 7 patients were colonised at one site.

Eighteen (43%) patients developed candidaemia without evidence of preceding colonisation of non-sterile sites by any Candida spp.. Four patients with candidaemia had colonisation of 2 or more non-contiguous sites with a different Candida spp. (discordant colonisation). Of the patients with discordant colonisation, 2 were colonised with fcz-sensitive C. albicans but developed candidaemia with a fcz-resistant species. Fig. 1 illustrates the distribution of Candida colonisation in patients with subsequent candidaemia at the time of the first episode of candidaemia.

C. glabrata candidaemia

Sixteen patients had C. glabrata candidaemia of which only 2 were fcz-sensitive. Table 4 shows non-sterile colonisation preceding C. glabrata and non-glabrata candidaemia.

A significant difference was detected in the total number of samples sent from patients with Candida glabrata candidaemia (median 5.5 (IQ range 9.25)) compared with patients with non-glabrata candidaemia (median 19 (IQ range 22), $p = 0.002$). Likewise a significant difference was detected in the number of non-sterile samples sent from these patient groups (C. glabrata candidaemia: median 3.5 (IQ range 9.25); non-glabrata candidaemia: median 14 (IQ range 22); $p = 0.003$). However, patients with non-glabrata candidaemia had a significantly longer duration of stay than patients with C. glabrata candidaemia ($p = 0.02$).

C. glabrata candidaemia was significantly less likely than non-glabrata candidaemia to be preceded by colonisation of 2 or more non-sterile sites with the same species (2 sites: 1/16 vs 12/30; $\chi^2 = 4.32$, df = 1; $P = 0.04$).

Of C. glabrata candidaemias, 75% occurred with no prior evidence of colonisation; in 67% of patients with candidaemia in the absence of colonisation, the species detected was C. glabrata.

Discussion

In this retrospective study 65.7% of candidaemias were caused by non-albicans species, a figure in keeping with the SENTRY surveillance programme.\textsuperscript{10} C. glabrata was the most frequent isolate from both blood and non-sterile sites after Candida albicans, in agreement with a previous large study,\textsuperscript{11} although the authors did not investigate the relationship between colonising species and those causing subsequent invasive infection. In this study the proportion of Candida spp. isolated from blood and non-sterile sites was significantly different, with a higher proportion of C. glabrata isolates detected from blood compared with non-sterile specimens whereas a higher proportion of Candida isolates from non-sterile sites were C. albicans; a finding reflected in the proportion of fcz-sensitive isolates from these sites, with a higher proportion of isolates from blood being fcz-resistant compared with non-sterile isolates. This cannot be explained by the hypothesis that C. albicans colonisation leads to pre-emptive fcz therapy and the selection of non-albicans/fcz-resistant isolates, increasing the likelihood that subsequent candidaemias are due to a fcz-resistant species;\textsuperscript{12–14} in this study only 2-patients (4.8%) who were colonised at 2 or more non-sterile sites with a fcz-sensitive species developed candidaemia with a fcz-

<table>
<thead>
<tr>
<th>Year of admission</th>
<th>No of admissions</th>
<th>Mean age in years (SD)</th>
<th>% Male; female</th>
<th>Mean APACHEII (SD)</th>
<th>Mean length of stay in days (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>712</td>
<td>52.6 (19.2)</td>
<td>58.3; 41.7</td>
<td>21.9 (7.9)</td>
<td>6.2 (10.5)</td>
</tr>
<tr>
<td>2001</td>
<td>644</td>
<td>52.4 (19.6)</td>
<td>62.4; 37.6</td>
<td>18.0 (6.9)</td>
<td>6.9 (9.9)</td>
</tr>
<tr>
<td>2003</td>
<td>559</td>
<td>52.8 (19.2)</td>
<td>62.6; 37.4</td>
<td>17.5 (7.5)</td>
<td>9.5 (15.3)</td>
</tr>
<tr>
<td>2005</td>
<td>807</td>
<td>53.4 (20.0)</td>
<td>62.2; 37.8</td>
<td>17.9 (7.2)</td>
<td>7.3 (12.1)</td>
</tr>
<tr>
<td>2007</td>
<td>776</td>
<td>54.7 (19.8)</td>
<td>61.3; 38.7</td>
<td>17.9 (7.1)</td>
<td>7.5 (10.4)</td>
</tr>
<tr>
<td>Total cohort</td>
<td>3500</td>
<td>53.2 (19.7)</td>
<td>61.3; 38.7</td>
<td>18.7 (7.5)</td>
<td>7.4 (11.7)</td>
</tr>
<tr>
<td>Candidaemic patients</td>
<td>42</td>
<td>55.9 (18.9)</td>
<td>61.9; 38.1</td>
<td>20.5 (6.4)</td>
<td>24.5 (21.5)</td>
</tr>
</tbody>
</table>

Table 2  Admissions to ICU/HDU.

<table>
<thead>
<tr>
<th>Blood</th>
<th>Non-sterile</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of C. albicans isolates (%)</td>
<td>25 (54.3) 848 (79.8)</td>
</tr>
<tr>
<td>No of C. glabrata isolates (%)</td>
<td>16 (34.8) 106 (10.0)</td>
</tr>
<tr>
<td>No of non-albicans/non-glabrata isolates (%)</td>
<td>5 (10.9) 108 (10.2)</td>
</tr>
<tr>
<td>No fcz-sensitive (%)</td>
<td>31 (67.4) 961 (90.5)</td>
</tr>
<tr>
<td>No fcz SDD/resistant (%)</td>
<td>15 (32.6) 101 (9.5)</td>
</tr>
</tbody>
</table>

Table 3  Distribution and fcz-sensitivity of Candida spp. from blood and non-sterile sites.

| Figure 1 | Number of candidaemic patients (%) with prior non-sterile site colonisation at first candidaemic episode. |
resistant species; furthermore C. glabrata candidaemia was significantly more likely to occur in the absence of non-sterile site colonisation by any species. However, as the aim of the screening policy was to detect MRSA, blood agar rather than CNA2 chromogenic agar was used as the primary isolation medium. It is therefore likely that this reduced overall the detection of Candida from non-sterile sites, and potentially leads to a detection bias towards C. albicans isolation from non-sterile sites, due to the characteristic colonial morphology.

No trend was detected over time in either the proportion of C. glabrata or C. albicans isolated from blood or non-sterile sites, or in fcz-sensitivity of these isolates, despite the formal introduction of a pre-emptive anti-fungal therapy policy at our institution in 2005. This is unexpected; it was hypothesised that there would be a species shift towards fcz-resistant species. This could be explained if C. albicans candidaemia had occurred in the absence of colonisation and thus in patients not exposed to pre-emptive fcz therapy; however this seems improbale as in this study non-glabrata candidaemia was significantly more likely to be preceded by 2-site colonisation than C. glabrata candidaemia, which was more likely to occur in the absence of non-sterile site colonisation by any species. Previous studies have demonstrated a decrease in invasive fungal infections with pre-emptive or prophylactic fcz therapy; however they failed to provide convincing evidence of an increase in the incidence of invasive disease or colonisation by fcz-resistant Candida spp.. Nevertheless the possibility of such a relationship cannot be ruled out data from the US indicated a decrease in the incidence of candidaemia during the last decade, mainly due to a reduction in C. albicans candidaemia but with an increase in the proportion of candidaemias caused by non-albicans species. In addition, recent studies have raised the possibility that preceding antimicrobial therapy have a role in the development of candidaemia. Furthermore, more work is required to elucidate the relationship between prophylaxis and subsequent Candida colonisation and invasive disease.

Of the 16 C. glabrata candidaemias, 4 occurred in 2001; 3 in 2003; 1 in 2005; and 8 in 2007. Isolates in 2001 and 2006 occurred in different calendar months, separated by a minimum of 19 days. This is unlikely to be caused by cross-infection by health-care workers due to the transient carriage of yeasts on the hands of healthy workers, and the time period over which the isolates were detected. In 2007, 3 blood isolates were detected over an 11-day period in May–June, and in October, 2 C. glabrata candidaemias occurred on the same day. In these instances, health-care associated spread cannot be excluded.

Exogenous transmission of Candida spp. has been reported, although endogenous colonisation is thought to cause most candidaemias. Candida colonisation of multiple sites is an independent risk factor for invasive disease and it has been suggested that colonisation of 2 or more non-contiguous sites in a high risk patient is sufficient to initiate treatment. In this retrospective study, only 31% of patients who developed candidaemia would have received appropriate pre-emptive treatment based on colonisation of 2 non-contiguous sites, whereas 20 patients (48%) would have received either inappropriate or anti-fungal therapy as they had either no colonisation or candidaemia with a fcz-resistant species despite colonisation with fcz-sensitive species. This finding is at odds with the results of a previous prospective study by Pittet et al., which found that all patients who developed invasive infections were colonised previously with genetically identical species. This differing result may be due to the systematic prospective sampling and daily calculation of colonisation index by Pittet et al., a method which could not be employed in this study, where colonisation in the candidaemic subgroup was investigated retrospectively. In this current study a further 7 patients (16.7%) had colonisation of only one non-sterile site, and therefore would have been unlikely to receive pre-emptive therapy if based on colonisation of 2 or more non-contiguous sites alone. Therefore not only does pre-emptive therapy based upon colonisation of at least two sites inadequately select patients at high risk of candidaemia but, based on the results of this study, it appears that colonisation is not a necessary pre-requisite for invasive infection, as was previously thought.

More recently colonisation index (ratio of the number of different body sites colonised by Candida spp. to the total number of body sites cultured) has been proposed as a method of detecting which at-risk, colonised patients would benefit from pre-emptive anti-fungal therapy. It has been shown to have a higher positive predictive value for subsequent invasive Candida disease than 2-site colonisation, although should be incorporated into overall clinical evaluation of an at-risk patient, rather than used as a definitive test of need for pre-emptive therapy. However, in this study even if colonisation index was used to determine pre-emptive therapy, at least 43% of patients who developed candidaemia would not have received pre-emptive therapy. It is possible that colonisation may be a more robust indicator of subsequent candidaemia for non-glabrata species; in this study, in 67% of patients with de novo candidaemias the species detected was C. glabrata. This implies that even if pre-emptive anti-fungal therapy was initiated in patients with no evidence of colonisation, but who had other risk factors for invasive disease, if fcz was prescribed the therapy would
be inappropriate as non-colonisation appears to be a feature of C. glabrata invasive disease. In this study, patients with C. glabrata candidaemia had significantly fewer non-sterile specimens sent than patients with non-glabrata candidae-
ma. However, non-sterile sampling is confounded by dura-
tion of ICU stay, with C. glabrata candidaemias occurring earlier in the patients’ admission compared with non-glab-
rata candidaemias, therefore it is not unexpected that these patients had fewer non-sterile samples sent. C. glabrata
may be inherently more pathogenic than other Candida spp. and so more likely to cause invasive disease than coloni-
sation in critically ill patients, although this hypothesis is not borne out by mortality rates from candidaemia due to C.
glabrata compared with C. albicans. 

Alternatively the patients who develop C. glabrata candidaemia without prior colonisation may represent a more severely debilitated subgroup of the ICU population. In this study, candidaemic patients had a significantly longer ICU/HDU admission compared with the total cohort, which could denote a more de-
bilitated group.

Previous studies investigating colonisation index have not explored its predictive value according to spe-
cies,4,5,7,27; further work is needed to explore the relation-
ship between non-sterile site colonisation, patient risk factors and C. glabrata candidaemia.

In conclusion, this study suggests that despite the introduction of pre-emptive anti-fungal therapy, there has been no increase in the proportion of either non-
albicans or fcz-resistant species isolated from blood or non-
sterile sites.

However pre-emptive therapy based upon 2-site coloni-
sation or colonisation index may be inadequate as almost half of candidaemic patients in this study had no prior colonisation; two thirds of these candidaemias were due to C. glabrata, which is more likely to present as candidaemia without evidence of colonisation. Non-glabrata candidae-
iae are more likely to be preceded by 2-site colonisation; therefore colonisation index may be a more robust predic-
tor of invasive disease by non-glabrata Candida spp.. Fur-
ter work is needed to elucidate the relationship between non-sterile site colonisation and C. glabrata candidaemia.

Acknowledgements

This work was supported in part by a commissioned re-
search programme for the antimicrobial resistance action plan, funded by the Northern Ireland Department of Health Social Services and Public Safety, Research and Develop-
ment Office.

Data in this study was collected prospectively on Can-
dida isolates from blood and non-sterile sites as part of the routine service of the Royal Victoria Hospital Microbiol-
ogy Laboratory.

References
1. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-
Chanoin MH, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European preva-
ience of infection in intensive care (EPIC) study. EPIC Interna-
2002;17:168–75.
3. Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. Effects of nos-
ocomial candidemia on outcomes of critically ill patients. Am J Med
4. Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical
5. Eggimann P, Garbino J, Pittet D. Management of Candida species
infections in critically ill patients. Lancet Infect Dis
2004;38:161–89.
8. Munoz P, Burillo A, Bouza E. Criterias used when initiating anti-
10. Pfaffer MA, Diekema DJ, Jones RN, Sader HS, Fliut AC, Hollis RJ, et al. International surveillance of bloodstream infec-
tions due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Micro-
tronopenic critically ill patients: results of the EPCAN observa-
Aug 29].
14. Blot S, Vandewoude K, Hoste E, Poeelaert J, Colardyn F. Out-
15. Playford EG, Webster AC, Sorrell TC, Craig JC. Antifungal agents for preventing fungal infections in non-neutropenic criti-

cally ill and surgical patients: systematic review and meta-
analysis of randomized clinical trials. J Antimicrob Chemother
2006;57:628–38.
16. Trick WE, Fridkin SK, Edwards JR, Hajjeh RA, Gaynes RP. Secu-
tions in surgical intensive care unit patients: the NEMIS pro-
emia: a case-case-control study. Antimicrobial Agents Chemo-


